Departures from Axisymmetric Balance Dynamics during Secondary Eyewall Formation
نویسندگان
چکیده
Departures from axisymmetric balance dynamics are quantified during a case of secondary eyewall formation. The case occurred in a three-dimensional mesoscale convection-permitting numerical simulation of a tropical cyclone, integrated from an initial weak mesoscale vortex in an idealized quiescent environment. The simulation exhibits a canonical eyewall replacement cycle. Departures from balance dynamics are quantified by comparing the azimuthally averaged secondary circulation and corresponding tangential wind tendencies of the mesoscale integration with those diagnosed as the axisymmetric balanced response of a vortex subject to diabatic and tangentialmomentum forcing. Balance dynamics is defined here, following the tropical cyclone literature, as those processes that maintain a vortex in axisymmetric thermal wind balance. The dynamical and thermodynamical fields needed to characterize the background vortex for the Sawyer– Eliassen inversion are obtained by azimuthally averaging the relevant quantities in the mesoscale integration and by computing their corresponding balanced fields. Substantial differences between azimuthal averages and their homologous balance-derived fields are found in the boundary layer. These differences illustrate the inappropriateness of the balance assumption in this region of the vortex (where the secondary eyewall tangential wind maximum emerges). Although the balance model does broadly capture the sense of the forced transverse (overturning) circulation, the balance model is shown to significantly underestimate the inflow in the boundary layer. This difference translates to unexpected qualitative differences in the tangential wind tendency. The main finding is that balance dynamics does not capture the tangential wind spinup during the simulated secondary eyewall formation event.
منابع مشابه
Are Eyewall Replacement Cycles Governed Largely by Axisymmetric Balance Dynamics?
The authors question the widely held view that radial contraction of a secondary eyewall during an eyewall replacement cycle is well understood and governed largely by the classical theory of axisymmetric balance dynamics. The investigation is based on a comparison of the secondary circulation and derived tangential wind tendency between a full-physics simulation and the Sawyer–Eliassen balance...
متن کاملOn the Applicability of Linear, Axisymmetric Dynamics in Intensifying and Mature Tropical Cyclones
The applicability of linearized axisymmetric dynamics to the intensification and structure change of tropical cyclones is investigated. The study is motivated by recent work that presented axisymmetric solutions to the linearized, non-hydrostatic, vortex-anelastic equations of motion (the so-called 3DVPAS model). The work called into question the importance of a recently proposed nonlinear, sys...
متن کاملAn Axisymmetric View of Concentric Eyewall Evolution in Hurricane
Multiplatform observations of Hurricane Rita (2005) were collected as part of the Hurricane Rainband and Intensity Change Experiment (RAINEX) field campaign during a concentric eyewall stage of the storm’s life cycle that occurred during 21–22 September. Satellite, aircraft, dropwindsonde, and Doppler radar data are used here to examine the symmetric evolution of the hurricane as it underwent e...
متن کاملClouds in Tropical Cyclones
Clouds within the inner regions of tropical cyclones are unlike those anywhere else in the atmosphere. Convective clouds contributing to cyclogenesis have rotational and deep intense updrafts but tend to have relatively weak downdrafts. Within the eyes of mature tropical cyclones, stratus clouds top a boundary layer capped by subsidence. An outward-sloping eyewall cloud is controlled by adjustm...
متن کاملSome Aspects of Hurricane Inner-Core Dynamics and Energetics
The energy cycle of the mature hurricane resides in the secondary circulation that passes through the storm’s eyewall. By equating the generation of energy in this cycle to boundary layer dissipation, an upper bound on wind speed is derived. This bound depends on the degree of thermodynamic disequilibrium between the tropical ocean and atmosphere, on the difference between sea surface and outfl...
متن کامل